Output list
Journal article
Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia
Published 03/17/2023
Science advances, 9, 11, eadf7108
Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin’s paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using the sea anemone Aiptasia, we show that during symbiosis, the increased availability of glucose and the presence of the algae jointly induce the coordinated up-regulation and relocalization of glucose and ammonium transporters. These molecular responses are critical to support symbiont functioning and organism-wide nitrogen assimilation through glutamine synthetase/glutamate synthase–mediated amino acid biosynthesis. Our results reveal crucial aspects of the molecular mechanisms underlying nitrogen conservation and recycling in these organisms that allow them to thrive in the nitrogen-poor ocean environments. Whole-organism nitrogen assimilation fueled by glucose from symbiotic algae enables corals to flourish in oligotrophic waters.
Journal article
Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs
Published 12/12/2022
The ISME Journal
The sensitivity of reef-building coral to elevated temperature is a function of their symbiosis with dinoflagellate algae in the family Symbiodiniaceae. Changes in the composition of the endosymbiont community in response to thermal stress can increase coral thermal tolerance. Consequently, this mechanism is being investigated as a human-assisted intervention for rapid acclimation of coral in the face of climate change. Successful establishment of novel symbioses that increase coral thermal tolerance have been demonstrated in laboratory conditions; however, it is unclear how long these heterologous relationships persist in nature. Here, we test the persistence of a novel symbiosis between Acropora palmata and Durusdinium spp. from Mote Marine Laboratory's ex situ nursery by outplanting clonal replicates (ramets) of five A. palmata host genotypes to natural reefs in the lower Florida Keys. Amplicon sequencing analysis of ITS2-type profiles revealed that the majority of surviving ramets remained dominated by Durusdinium spp. two years after transplantation. However, 15% of ramets, including representatives of all genotypes, exhibited some degree of symbiont shuffling or switching at six of eight sites, including complete takeover by site-specific strains of the native symbiont, Symbiodinium fitti. The predominant long-term stability of the novel symbiosis supports the potential effectiveness of symbiont modification as a management tool. Although, the finding that 6-7 year-old coral can alter symbiont community composition in the absence of bleaching indicates that Symbiodiniaceae communities are indeed capable of great flexibility under ambient conditions.
Journal article
Evidence for adaptive morphological plasticity in the Caribbean coral, Acropora cervicornis
Published 12/06/2022
Proceedings of the National Academy of Sciences - PNAS, 119, 49, e2203925119 - e2203925119
Genotype-by-environment interactions (GxE) indicate that variation in organismal traits cannot be explained by fixed effects of genetics or site-specific plastic responses alone. For tropical coral reefs experiencing dramatic environmental change, identifying the contributions of genotype, environment, and GxE on coral performance will be vital for both predicting persistence and developing restoration strategies. We quantified the impacts of G, E, and GxE on the morphology and survival of the endangered coral, , through an in situ transplant experiment exposing common garden (nursery)-raised clones of ten genotypes to nine reef sites in the Florida Keys. By fate-tracking outplants over one year with colony-level 3D photogrammetry, we uncovered significant GxE on coral size, shape, and survivorship, indicating that no universal winner exists in terms of colony performance. Rather than differences in mean trait values, we found that individual-level morphological plasticity is adaptive in that the most plastic individuals also exhibited the fastest growth and highest survival. This indicates that adaptive morphological plasticity may continue to evolve, influencing the success of and resulting reef communities in a changing climate. As focal reefs are active restoration sites, the knowledge that variation in phenotype is an important predictor of performance can be directly applied to restoration planning. Taken together, these results establish as a system for studying the ecoevolutionary dynamics of phenotypic plasticity that also can inform genetic- and environment-based strategies for coral restoration.
Journal article
Published 04/01/2022
Coral reefs, 41, 2, 265 - 276
Microbiome studies across taxa have established the influence of host genotype on microbial recruitment and maintenance. However, research exploring host-specific epibionts in scleractinian corals is scant, and the influence of intraspecific differences across environments remains unclear. Here, we studied ten Acropora cervicornis genotypes to investigate the relative roles of host genotype and environment in structuring the epibiome. Coral mucus was sampled in a common garden nursery from replicate ramets of distinct genotypes (T-0). Coral fragment replicates (n = 3) of each genotype were then transplanted to nine different field sites in the Lower Florida Keys, and mucus was again sampled one year later from surviving ramets (T-12). 16S rRNA amplicon sequencing was used to assess microbial composition, richness, and beta-diversity. The most abundant and consistent amplicon sequencing variants (ASVs) in all samples belonged to Midichloriaceae (MD3-55 genus) and Cyanobacteria (Synechococccus). The relative abundances of these bacterial taxa varied consistently between genotypes, whereas neither the composition nor taxonomic relative abundance were significantly different among field sites. Interestingly, several high MD3-55 hosting genotypes showed rapid diversification and an increase in MD3-55 following transplantation. Overall, our results indicate healthy A. cervicornis genotypes retain distinct epibiome signatures through time, suggesting a strong host component. Lastly, our results show that differences in MD3-55 abundances can be consistently detected in the epibiome of distinct host genotypes of A. cervicornis. As this organism (sensu Aquarickettsia rohweri) has been implicated as a marker of disease resistance, this finding reinforces the potential use of microbial indicators in reef restoration efforts via non-invasive surface/mucus sampling.
Journal article
Published 11/17/2020
Proceedings of the National Academy of Sciences - PNAS, 117, 46, 28906 - 28917
Loss of endosymbiotic algae ("bleaching") under heat stress has become a major problem for reef-building corals worldwide. To identify genes that might be involved in triggering or executing bleaching, or in protecting corals from it, we used RNAseq to analyze gene-expression changes during heat stress in a coral relative, the sea anemone Aiptasia. We identified >500 genes that showed rapid and extensive up-regulation upon temperature increase. These genes fell into two clusters. In both clusters, most genes showed similar expression patterns in symbiotic and aposymbiotic anemones, suggesting that this early stress response is largely independent of the symbiosis. Cluster I was highly enriched for genes involved in innate immunity and apoptosis, and most transcript levels returned to baseline many hours before bleaching was first detected, raising doubts about their possible roles in this process. Cluster II was highly enriched for genes involved in protein folding, and most transcript levels returned more slowly to baseline, so that roles in either promoting or preventing bleaching seem plausible. Many of the genes in clusters I and II appear to be targets of the transcription factors NFκB and HSF1, respectively. We also examined the behavior of 337 genes whose much higher levels of expression in symbiotic than aposymbiotic anemones in the absence of stress suggest that they are important for the symbiosis. Unexpectedly, in many cases, these expression levels declined precipitously long before bleaching itself was evident, suggesting that loss of expression of symbiosis-supporting genes may be involved in triggering bleaching.
Journal article
Published 02/2018
Plant physiology (Bethesda), 176, 2, 1793 - 1807
Journal article
Published 06/2015
Coral Reefs, 34, 2, 655 - 662
The bacterium Vibrio coralliilyticus has been implicated as the causative agent of coral tissue loss diseases (collectively known as white syndromes) at sites across the Indo-Pacific and represents an emerging model pathogen for understanding the mechanisms linking bacterial infection and coral disease. In this study, we used a mini-Tn7 transposon delivery system to chromosomally label a strain of V. coralliilyticus isolated from a white syndrome disease lesion with a green fluorescent protein gene (GFP). We then tested the utility of this modified strain as a research tool for studies of coral host–pathogen interactions. A suite of biochemical assays and experimental infection trials in a range of model organisms confirmed that insertion of the GFP gene did not interfere with the labeled strain’s virulence. Using epifluorescence video microscopy, the GFP-labeled strain could be reliably distinguished from non-labeled bacteria present in the coral holobiont, and the pathogen’s interactions with the coral host could be visualized in real time. This study demonstrates that chromosomal GFP labeling is a useful technique for visualization and tracking of coral pathogens and provides a novel tool to investigate the role of V. coralliilyticus in coral disease pathogenesis.
Journal article
Published 2015
PloS one, 10, 8, e0135725 - e0135725
In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue.
Journal article
Published 06/2014
Environmental microbiology reports, 6, 3, 287 - 292
Summary Coral reefs are under increasing stress caused by global and local environmental changes, which are thought to increase the susceptibility of corals to opportunistic pathogens. In the absence of an easily culturable model animal, the understanding of the mechanisms of disease progression in corals remains fairly limited. In the present study, we tested the susceptibility of the tropical sea anemone Aiptasia pallida to an opportunistic coral pathogen (Serratia marcescens). A. pallida was susceptible to S. marcescens PDL100 and responded to this opportunistic coral pathogen with darkening of the tissues and retraction of tentacles, followed by complete disintegration of polyp tissues. Histological observations revealed loss of zooxanthellae and structural changes in eosinophilic granular cells in response to pathogen infection. A screen of S. marcescens mutants identified a motility and tetrathionate reductase mutants as defective in virulence in the A. pallida infection model. In co‐infections with the wild‐type strain, the tetrathionate reductase mutant was less fit within the surface mucopolysaccharide layer of the host coral Acropora palmata.
Journal article
Published 02/2014
Microbial ecology, 67, 2, 392 - 401
Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.